Volver a Guía

CURSO RELACIONADO

Análisis Matemático 66

2025 GUTIERREZ (ÚNICA)

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)

Práctica 4: Límites y Continuidad

1. Calcule los siguientes límites
b) limx+2x2x2+1\lim _{x \rightarrow+\infty} \frac{2 x^{2}}{x^{2}+1}

Respuesta

Miremos bien este límite: limx+2x2x2+1 \lim _{x \rightarrow+\infty} \frac{2x^{2}}{x^{2}+1} Fijate que cuando xx tiende a más infinito, tanto numerador como denominador se están yendo a infinito, por lo tanto tenemos una indeterminación de tipo "infinito sobre infinito". Pero fijate que tanto el numerador como el denominador son polinomios, por lo tanto podemos seguir las mismas ideas que vimos en la clase de indeterminaciones infinito sobre infinito. Acordate que cuando los grados de los polinomios son iguales, el límite nos va a dar un número. Y no a cualquier número, sino a los que acompañan a la xx de exponente mayor. En este caso, podemos anticipar que el resultado del límite será 21 \frac{2}{1} . Si queremos justificarlo de manera más formal, podemos "sacar factor común el que manda". En este caso sacamos factor común x2 x^2 tanto en el numerador como en el denominador: limx+2x2x2(1+1x2) \lim _{x \rightarrow+\infty} \frac{2x^{2}}{x^{2}(1+\frac{1}{x^{2}})} Cancelamos los x2 x^2 limx+21+1x2 \lim _{x \rightarrow+\infty} \frac{2}{1+\frac{1}{x^{2}}} Ahora, al tomar el límite cuando x x tiende a infinito, el término 1x2 \frac{1}{x^{2}} tiende a 0. Por lo tanto, efectivamente el límite nos dio... limx+2x2x2+1=21=2 \lim _{x \rightarrow+\infty} \frac{2x^{2}}{x^{2}+1} = \frac{2}{1} = 2
Reportar problema
ExaComunidad
Iniciá sesión o Registrate para dejar tu comentario.